The global biopharmaceutical industry is the most rapidly growing industry in the science and technology sector owing to increasing R&D investments in biopharmaceutical drug development facilities. The global automation market in biopharmaceutical industry includes deployment of automation in biopharmaceutical academic research centers, manufacturing and research companies, clinical labs, and government approved labs.

One trend in the market is continuous manufacturing. Advantages of continuous operations are well-recognized in various industries. It completes the process in a shorter time as it omits the hold steps, reduces shut down time, and reduces the labor requirement. Over the decades, upstream processing utilized this technology.

According to the report, one driver in the market is use of automation in data acquisition. Traditionally, research labs collect data manually and store it in spreadsheets. This method is not only time-consuming but also affects operational efficiency and is prone to errors. It also restricts monitoring of data in real time. The biopharmaceutical industry is working on data collection and adding the information from spreadsheets to a database. Database collection of upstream and downstream processes is being utilized to create a library that increases operational efficiency and process optimization.

Further, the report states that one challenge in the market is high R&D cost. The biopharmaceutical industry is a rapidly growing industry in pharmaceuticals. Complex drugs are manufactured with the help of 3-D modeling and are produced with high efficacy and precision. These drugs can provide medication to medical issues that were once incurable. Currently, the biopharmaceutical industry is looking to yield new products to address diseases such as cancer, Alzheimer's disease, and hepatitis C. Innovations in the biopharmaceutical industry are highly expensive. The average cost associated with a new drug is around $2 billion, including the cost of unsuccessful drug approvals, out of which almost $400 million is the cost included in pre-clinical and clinical testing.

The global Automation in Biopharmaceutical market was valued at 1040 million US$ in 2018 and will reach 1590 million US$ by the end of 2025, growing at a CAGR of 6.2% during 2019-2025.

This report focuses on Automation in Biopharmaceutical volume and value at global level, regional level and company level. From a global perspective, this report represents overall Automation in Biopharmaceutical market size by analyzing historical data and future prospect. Regionally, this report categorizes the production, apparent consumption, export and import of Automation in Biopharmaceutical in North America, Europe, China, Japan, Southeast Asia and India.

For each manufacturer covered, this report analyzes their Automation in Biopharmaceutical manufacturing sites, capacity, production, ex-factory price, revenue and market share in global market. The following manufacturers are covered:

- Danaher
- GE
- PerkinElmer
- Tecan Trading
- Thermo Fisher Scientific
- Bruker
- Peak Analysis & Automation
- Waters
- Capsugel
- RheoSense
- Eirechrom
- BioProcess International
- Novasep

Segment by Regions
- North America
- Europe
- China
- Japan
- Southeast Asia
- India

Segment by Type
- Clinical stage automation
- Drug discovery stage automation

Segment by Application
- Research and Development
- Clinical

Table of Contents
Executive Summary
1 Industry Overview of Automation in Biopharmaceutical
 1.1 Definition of Automation in Biopharmaceutical
 1.2 Automation in Biopharmaceutical Segment by Type
1.2.1 Global Automation in Biopharmaceutical Production Growth Rate Comparison by Types (2014-2025)
1.2.2 Clinical stage automation
1.2.3 Drug discovery stage automation

1.3 Automation in Biopharmaceutical Segment by Applications
1.3.1 Global Automation in Biopharmaceutical Consumption Comparison by Applications (2014-2025)
1.3.2 Research and Development
1.3.3 Clinical

1.4 Global Automation in Biopharmaceutical Overall Market
1.4.1 Global Automation in Biopharmaceutical Revenue (2014-2025)
1.4.2 Global Automation in Biopharmaceutical Production (2014-2025)
1.4.3 North America Automation in Biopharmaceutical Status and Prospect (2014-2025)
1.4.4 Europe Automation in Biopharmaceutical Status and Prospect (2014-2025)
1.4.5 China Automation in Biopharmaceutical Status and Prospect (2014-2025)
1.4.6 Japan Automation in Biopharmaceutical Status and Prospect (2014-2025)
1.4.7 Southeast Asia Automation in Biopharmaceutical Status and Prospect (2014-2025)
1.4.8 India Automation in Biopharmaceutical Status and Prospect (2014-2025)

2 Manufacturing Cost Structure Analysis
2.1 Raw Material and Suppliers
2.2 Manufacturing Cost Structure Analysis of Automation in Biopharmaceutical
2.3 Manufacturing Process Analysis of Automation in Biopharmaceutical
2.4 Industry Chain Structure of Automation in Biopharmaceutical

3 Development and Manufacturing Plants Analysis of Automation in Biopharmaceutical
3.1 Capacity and Commercial Production Date
3.2 Global Automation in Biopharmaceutical Manufacturing Plants Distribution
3.3 Major Manufacturers Technology Source and Market Position of Automation in Biopharmaceutical
3.4 Recent Development and Expansion Plans

4 Key Figures of Major Manufacturers
4.1 Automation in Biopharmaceutical Production and Capacity Analysis
4.2 Automation in Biopharmaceutical Revenue Analysis
4.3 Automation in Biopharmaceutical Price Analysis
4.4 Market Concentration Degree

5 Automation in Biopharmaceutical Regional Market Analysis
5.1 Automation in Biopharmaceutical Production by Regions
5.1.1 Global Automation in Biopharmaceutical Production by Regions
5.1.2 Global Automation in Biopharmaceutical Revenue by Regions
5.2 Automation in Biopharmaceutical Consumption by Regions
5.3 North America Automation in Biopharmaceutical Market Analysis
5.3.1 North America Automation in Biopharmaceutical Production
5.3.2 North America Automation in Biopharmaceutical Revenue
5.3.3 Key Manufacturers in North America
5.3.4 North America Automation in Biopharmaceutical Import and Export
5.4 Europe Automation in Biopharmaceutical Market Analysis
5.4.1 Europe Automation in Biopharmaceutical Production
5.4.2 Europe Automation in Biopharmaceutical Revenue
5.4.3 Key Manufacturers in Europe
5.4.4 Europe Automation in Biopharmaceutical Import and Export
5.5 China Automation in Biopharmaceutical Market Analysis
5.5.1 China Automation in Biopharmaceutical Production
5.5.2 China Automation in Biopharmaceutical Revenue
5.5.3 Key Manufacturers in China
5.5.4 China Automation in Biopharmaceutical Import and Export
5.6 Japan Automation in Biopharmaceutical Market Analysis
5.6.1 Japan Automation in Biopharmaceutical Production
5.6.2 Japan Automation in Biopharmaceutical Revenue
5.6.3 Key Manufacturers in Japan
5.6.4 Japan Automation in Biopharmaceutical Import and Export
5.7 Southeast Asia Automation in Biopharmaceutical Market Analysis
5.7.1 Southeast Asia Automation in Biopharmaceutical Production
5.7.2 Southeast Asia Automation in Biopharmaceutical Revenue
5.7.3 Key Manufacturers in Southeast Asia
5.7.4 Southeast Asia Automation in Biopharmaceutical Import and Export
5.8 India Automation in Biopharmaceutical Market Analysis
5.8.1 India Automation in Biopharmaceutical Production
5.8.2 India Automation in Biopharmaceutical Revenue
5.8.3 Key Manufacturers in India
5.8.4 India Automation in Biopharmaceutical Import and Export

6 Automation in Biopharmaceutical Segment Market Analysis (by Type)
6.1 Global Automation in Biopharmaceutical Production by Type
6.2 Global Automation in Biopharmaceutical Revenue by Type
6.3 Automation in Biopharmaceutical Price by Type

7 Automation in Biopharmaceutical Segment Market Analysis (by Application)
7.1 Global Automation in Biopharmaceutical Consumption by Application

8 Automation in Biopharmaceutical Major Manufacturers Analysis
8.1 Danaher
8.1.1 Danaher Automation in Biopharmaceutical Production Sites and Area Served
8.1.2 Danaher Product Introduction, Application and Specification
8.1.3 Danaher Automation in Biopharmaceutical Production, Revenue, Ex-factory Price and Gross Margin
13.1 Methodology/Research Approach
 • 13.1.1 Research Programs/Design
 • 13.1.2 Market Size Estimation
 • 13.1.3 Market Breakdown and Data Triangulation
13.2 Data Source
 • 13.2.1 Secondary Sources
 • 13.2.2 Primary Sources
13.3 Author List