Landing gear system is a vital component installed on every UAV. It ensures a stable support for the UAVs at rest on the ground, establishing an appropriate shock-absorbing device and enabling the chassis to move for taxiing during manhandling. It is a mechanical system that absorbs loads during landing and taxiing, as well as transfers substantial part of these loads to the airframe, dissipating majority of the impact energy. The main functions of such landing gears include energy absorption, taxi control, and braking.

The defense segment accounts for the maximum share of the market and occupied around 78% of the total market. APAC will be the fastest-growing region in the market. Much of the region’s growth can be attributed to the expansion of military capabilities in key countries such as China, Japan, India, and South Korea. The growing initiatives for indigenous aerospace platforms has led to the development of home-grown UAVs and military drones in the region. Several APAC nations are making huge investments in the parts and components for UAVs, which will propel the UAV landing gear market in the region in the coming years.

The Unmanned Aerial Vehicle Landing Gears market was valued at xx Million US$ in 2018 and is projected to reach xx Million US$ by 2025, at a CAGR of xx% during the forecast period. In this study, 2018 has been considered as the base year and 2019 to 2025 as the forecast period to estimate the market size for Unmanned Aerial Vehicle Landing Gears. This report presents the worldwide Unmanned Aerial Vehicle Landing Gears market size (value, production and consumption), splits the breakdown (data status 2014-2019 and forecast to 2025), by manufacturers, region, type and application. This study also analyzes the market status, market share, growth rate, future trends, market drivers, opportunities and challenges, risks and entry barriers, sales channels, distributors and Porter's Five Forces Analysis.

The following manufacturers are covered in this report:

UTC Aerospace Systems
Aero Telemetry
CIRCOR International
Fiber Dynamics
GE Aviation
Heroux-Devtek
Safran Landing Systems
ACP Composites
CESA
UAV Factory
Whippany Actuation Systems

Unmanned Aerial Vehicle Landing Gears Breakdown Data by Type
Strut Landing Gear
Rocker Landing Gear
Pontoon Landing Gear
Framed Landing Gear

Unmanned Aerial Vehicle Landing Gears Breakdown Data by Application
Defense
Commercial and Civil
Other

Unmanned Aerial Vehicle Landing Gears Production by Region
United States
Europe
China
Japan
Other Regions

Unmanned Aerial Vehicle Landing Gears Consumption by Region
North America
United States
Canada
Mexico
Asia-Pacific
China
India
Japan
South Korea
Australia
Indonesia
Malaysia
Philippines
Thailand
Vietnam
Europe
Germany
France
UK
The study objectives are:

To analyze and research the global Unmanned Aerial Vehicle Landing Gears status and future forecast involving, production, revenue, consumption, historical and forecast.

To present the key Unmanned Aerial Vehicle Landing Gears manufacturers, production, revenue, market share, and recent development.

To split the breakdown data by regions, type, manufacturers and applications.

To analyze the global and key regions market potential and advantage, opportunity and challenge, restraints and risks.

To analyze competitive developments such as expansions, agreements, new product launches, and acquisitions in the market.

In this study, the years considered to estimate the market size of Unmanned Aerial Vehicle Landing Gears:

- History Year: 2014 - 2018
- Base Year: 2018
- Estimated Year: 2019
- Forecast Year: 2019 - 2025

This report includes the estimation of market size for value (million USD) and volume (K Units). Both top-down and bottom-up approaches have been used to estimate and validate the market size of Unmanned Aerial Vehicle Landing Gears market, to estimate the size of various other dependent submarkets in the overall market. Key players in the market have been identified through secondary research, and their market shares have been determined through primary and secondary research. All percentage shares, splits, and breakdowns have been determined using secondary sources and verified primary sources.

For the data information by region, company, type and application, 2018 is considered as the base year. Whenever data information was unavailable for the base year, the prior year has been considered.

Contents:

Table of Contents

1 Study Coverage
 1.1 Unmanned Aerial Vehicle Landing Gears Product
 1.2 Key Market Segments in This Study
 1.3 Key Manufacturers Covered
 1.4 Market by Type
 1.4.1 Global Unmanned Aerial Vehicle Landing Gears Market Size Growth Rate by Type
 1.4.2 Strut Landing Gear
 1.4.3 Rocker Landing Gear
 1.4.4 Pontoon Landing Gear
 1.4.5 Framed Landing Gear
 1.5 Market by Application
 1.5.1 Global Unmanned Aerial Vehicle Landing Gears Market Size Growth Rate by Application
 1.5.2 Defense
 1.5.3 Commercial and Civil
 1.5.4 Other
 1.6 Study Objectives
 1.7 Years Considered

2 Executive Summary
 2.1 Global Unmanned Aerial Vehicle Landing Gears Market Size
 2.1.1 Global Unmanned Aerial Vehicle Landing Gears Revenue 2014-2025
 2.1.2 Global Unmanned Aerial Vehicle Landing Gears Production 2014-2025
 2.2 Unmanned Aerial Vehicle Landing Gears Growth Rate (CAGR) 2019-2025
 2.3 Analysis of Competitive Landscape
 2.3.1 Manufacturers Market Concentration Ratio (CR5 and HHI)
 2.3.2 Key Unmanned Aerial Vehicle Landing Gears Manufacturers
 2.3.2.1 Unmanned Aerial Vehicle Landing Gears Manufacturing Base Distribution, Headquarters
 2.3.2.2 Manufacturers Unmanned Aerial Vehicle Landing Gears Product Offered
 2.3.2.3 Date of Manufacturers Enter into Unmanned Aerial Vehicle Landing Gears Market
 2.4 Key Trends for Unmanned Aerial Vehicle Landing Gears Markets & Products

3 Market Size by Manufacturers
 3.1 Unmanned Aerial Vehicle Landing Gears Production by Manufacturers
 3.1.1 Unmanned Aerial Vehicle Landing Gears Production by Manufacturers
 3.1.2 Unmanned Aerial Vehicle Landing Gears Production Market Share by Manufacturers
 3.2 Unmanned Aerial Vehicle Landing Gears Revenue by Manufacturers
 3.2.1 Unmanned Aerial Vehicle Landing Gears Revenue by Manufacturers (2014-2019)
 3.2.2 Unmanned Aerial Vehicle Landing Gears Revenue Share by Manufacturers (2014-2019)
 3.3 Unmanned Aerial Vehicle Landing Gears Price by Manufacturers
 3.4 Mergers & Acquisitions, Expansion Plans

4 Unmanned Aerial Vehicle Landing Gears Production by Regions
 4.1 Global Unmanned Aerial Vehicle Landing Gears Production by Regions
 4.1.1 Global Unmanned Aerial Vehicle Landing Gears Production Market Share by Regions
 4.1.2 Global Unmanned Aerial Vehicle Landing Gears Revenue Market Share by Regions
 4.2 United States
 4.2.1 United States Unmanned Aerial Vehicle Landing Gears Production
 4.2.2 United States Unmanned Aerial Vehicle Landing Gears Revenue
 4.2.3 Key Players in United States
4.2.4 United States Unmanned Aerial Vehicle Landing Gears Import & Export

4.3 Europe
- 4.3.1 Europe Unmanned Aerial Vehicle Landing Gears Production
- 4.3.2 Europe Unmanned Aerial Vehicle Landing Gears Revenue
- 4.3.3 Key Players in Europe
- 4.3.4 Europe Unmanned Aerial Vehicle Landing Gears Import & Export

4.4 China
- 4.4.1 China Unmanned Aerial Vehicle Landing Gears Production
- 4.4.2 China Unmanned Aerial Vehicle Landing Gears Revenue
- 4.4.3 Key Players in China
- 4.4.4 China Unmanned Aerial Vehicle Landing Gears Import & Export

4.5 Japan
- 4.5.1 Japan Unmanned Aerial Vehicle Landing Gears Production
- 4.5.2 Japan Unmanned Aerial Vehicle Landing Gears Revenue
- 4.5.3 Key Players in Japan
- 4.5.4 Japan Unmanned Aerial Vehicle Landing Gears Import & Export

4.6 Other Regions
- 4.6.1 South Korea
- 4.6.2 India
- 4.6.3 Southeast Asia

5 Unmanned Aerial Vehicle Landing Gears Consumption by Regions
- 5.1 Global Unmanned Aerial Vehicle Landing Gears Consumption by Regions
 - 5.1.1 Global Unmanned Aerial Vehicle Landing Gears Consumption by Regions
 - 5.1.2 Global Unmanned Aerial Vehicle Landing Gears Consumption Market Share by Regions
- 5.2 North America
 - 5.2.1 North America Unmanned Aerial Vehicle Landing Gears Consumption by Application
 - 5.2.2 North America Unmanned Aerial Vehicle Landing Gears Consumption by Countries
 - 5.2.3 United States
 - 5.2.4 Canada
 - 5.2.5 Mexico
- 5.3 Europe
 - 5.3.1 Europe Unmanned Aerial Vehicle Landing Gears Consumption by Application
 - 5.3.2 Europe Unmanned Aerial Vehicle Landing Gears Consumption by Countries
 - 5.3.3 Germany
 - 5.3.4 France
 - 5.3.5 UK
 - 5.3.6 Italy
 - 5.3.7 Russia
- 5.4 Asia Pacific
 - 5.4.1 Asia Pacific Unmanned Aerial Vehicle Landing Gears Consumption by Application
 - 5.4.2 Asia Pacific Unmanned Aerial Vehicle Landing Gears Consumption by Countries
 - 5.4.3 China
 - 5.4.4 Japan
 - 5.4.5 South Korea
 - 5.4.6 India
 - 5.4.7 Australia
 - 5.4.8 Indonesia
 - 5.4.9 Thailand
 - 5.4.10 Malaysia
 - 5.4.11 Philippines
 - 5.4.12 Vietnam
- 5.5 Central & South America
 - 5.5.1 Central & South America Unmanned Aerial Vehicle Landing Gears Consumption by Application
 - 5.5.2 Central & South America Unmanned Aerial Vehicle Landing Gears Consumption by Country
 - 5.5.3 Brazil
- 5.6 Middle East and Africa
 - 5.6.1 Middle East and Africa Unmanned Aerial Vehicle Landing Gears Consumption by Application
 - 5.6.2 Middle East and Africa Unmanned Aerial Vehicle Landing Gears Consumption by Countries
 - 5.6.3 GCC Countries
 - 5.6.4 Egypt
 - 5.6.5 South Africa

6 Market Size by Type
- 6.1 Global Unmanned Aerial Vehicle Landing Gears Production by Type
- 6.2 Global Unmanned Aerial Vehicle Landing Gears Revenue by Type
- 6.3 Unmanned Aerial Vehicle Landing Gears Price by Type

7 Market Size by Application
- 7.1 Overview
- 7.2 Global Unmanned Aerial Vehicle Landing Gears Breakdown Dada by Application
 - 7.2.1 Global Unmanned Aerial Vehicle Landing Gears Consumption by Application

8 Manufacturers Profiles
- 8.1 UTC Aerospace Systems
 - 8.1.1 UTC Aerospace Systems Company Details
 - 8.1.2 Company Overview
 - 8.1.4 UTC Aerospace Systems Unmanned Aerial Vehicle Landing Gears Product Description
 - 8.1.5 UTC Aerospace Systems Recent Development
- 8.2 Aero Telemetry
 - 8.2.1 Aero Telemetry Company Details
 - 8.2.2 Company Overview
8.2.4 Aero Telemetry Unmanned Aerial Vehicle Landing Gears Product Description
8.2.5 Aero Telemetry Recent Development

8.3 CIRCOR International
- 8.3.1 CIRCOR International Company Details
- 8.3.2 Company Overview
- 8.3.4 CIRCOR International Unmanned Aerial Vehicle Landing Gears Product Description
- 8.3.5 CIRCOR International Recent Development

8.4 Fiber Dynamics
- 8.4.1 Fiber Dynamics Company Details
- 8.4.2 Company Overview
- 8.4.4 Fiber Dynamics Unmanned Aerial Vehicle Landing Gears Product Description
- 8.4.5 Fiber Dynamics Recent Development

8.5 GE Aviation
- 8.5.1 GE Aviation Company Details
- 8.5.2 Company Overview
- 8.5.4 GE Aviation Unmanned Aerial Vehicle Landing Gears Product Description
- 8.5.5 GE Aviation Recent Development

8.6 Heroux-Devtek
- 8.6.1 Heroux-Devtek Company Details
- 8.6.2 Company Overview
- 8.6.4 Heroux-Devtek Unmanned Aerial Vehicle Landing Gears Product Description
- 8.6.5 Heroux-Devtek Recent Development

8.7 Safran Landing Systems
- 8.7.1 Safran Landing Systems Company Details
- 8.7.2 Company Overview
- 8.7.4 Safran Landing Systems Unmanned Aerial Vehicle Landing Gears Product Description
- 8.7.5 Safran Landing Systems Recent Development

8.8 ACP Composites
- 8.8.1 ACP Composites Company Details
- 8.8.2 Company Overview
- 8.8.4 ACP Composites Unmanned Aerial Vehicle Landing Gears Product Description
- 8.8.5 ACP Composites Recent Development

8.9 CESA
- 8.9.1 CESA Company Details
- 8.9.2 Company Overview
- 8.9.4 CESA Unmanned Aerial Vehicle Landing Gears Product Description
- 8.9.5 CESA Recent Development

8.10 UAV Factory
- 8.10.1 UAV Factory Company Details
- 8.10.2 Company Overview
- 8.10.4 UAV Factory Unmanned Aerial Vehicle Landing Gears Product Description
- 8.10.5 UAV Factory Recent Development

8.11 Whippany Actuation Systems

9 Production Forecasts
- 9.1 Unmanned Aerial Vehicle Landing Gears Production and Revenue Forecast
 - 9.1.1 Global Unmanned Aerial Vehicle Landing Gears Production Forecast 2019-2025
 - 9.1.2 Global Unmanned Aerial Vehicle Landing Gears Revenue Forecast 2019-2025
- 9.2 Unmanned Aerial Vehicle Landing Gears Production and Revenue Forecast by Regions
 - 9.2.1 Global Unmanned Aerial Vehicle Landing Gears Revenue Forecast by Regions
 - 9.2.2 Global Unmanned Aerial Vehicle Landing Gears Production Forecast by Regions
- 9.3 Unmanned Aerial Vehicle Landing Gears Key Producers Forecast
 - 9.3.1 United States
 - 9.3.2 Europe
 - 9.3.3 China
 - 9.3.4 Japan
- 9.4 Forecast by Type
 - 9.4.1 Global Unmanned Aerial Vehicle Landing Gears Production Forecast by Type
 - 9.4.2 Global Unmanned Aerial Vehicle Landing Gears Revenue Forecast by Type

10 Consumption Forecast
- 10.1 Unmanned Aerial Vehicle Landing Gears Consumption Forecast by Application
- 10.2 Unmanned Aerial Vehicle Landing Gears Consumption Forecast by Regions
- 10.3 North America Market Consumption Forecast
 - 10.3.1 North America Unmanned Aerial Vehicle Landing Gears Consumption Forecast by Regions 2019-2025
 - 10.3.2 United States
 - 10.3.3 Canada
 - 10.3.4 Mexico
- 10.4 Europe Market Consumption Forecast
 - 10.4.1 Europe Unmanned Aerial Vehicle Landing Gears Consumption Forecast by Regions 2019-2025
 - 10.4.2 Germany
 - 10.4.3 France
 - 10.4.4 UK
10.4.5 Italy
10.4.6 Russia

10.5 Asia Pacific Market Consumption Forecast
10.5.1 Asia Pacific Unmanned Aerial Vehicle Landing Gears Consumption Forecast by Regions 2019-2025
10.5.2 China
10.5.3 Japan
10.5.4 South Korea
10.5.5 India
10.5.6 Australia
10.5.7 Indonesia
10.5.8 Thailand
10.5.9 Malaysia
10.5.10 Philippines
10.5.11 Vietnam

10.6 Central & South America Market Consumption Forecast
10.6.1 Central & South America Unmanned Aerial Vehicle Landing Gears Consumption Forecast by Regions 2019-2025
10.6.2 Brazil

10.7 Middle East and Africa Market Consumption Forecast
10.7.1 Middle East and Africa Unmanned Aerial Vehicle Landing Gears Consumption Forecast by Regions 2019-2025
10.7.2 GCC Countries
10.7.3 Egypt
10.7.4 South Africa

11 Value Chain and Sales Channels Analysis
11.1 Value Chain Analysis
11.2 Sales Channels Analysis
11.2.1 Unmanned Aerial Vehicle Landing Gears Sales Channels
11.2.2 Unmanned Aerial Vehicle Landing Gears Distributors
11.3 Unmanned Aerial Vehicle Landing Gears Customers

12 Market Opportunities & Challenges, Risks and Influences Factors Analysis
12.1 Market Opportunities and Drivers
12.2 Market Challenges
12.3 Market Risks/Restraints

13 Key Findings in the Global Unmanned Aerial Vehicle Landing Gears Study

14 Appendix
14.1 Research Methodology
14.1.1 Methodology/Research Approach
14.1.1.1 Research Programs/Design
14.1.1.2 Market Size Estimation
14.1.1.3 Market Breakdown and Data Triangulation
14.1.2 Data Source
14.1.2.1 Secondary Sources
14.1.2.2 Primary Sources
14.2 Author Details