Global Membrane Electrode Assemblies (MEA) for Fuel Cells Market Insights, Forecast to 2025

Description:
Global Membrane Electrode Assemblies (MEA) for Fuel Cells market size will increase to Million US$ by 2025, from Million US$ in 2018, at a CAGR of during the forecast period. In this study, 2018 has been considered as the base year and 2019 to 2025 as the forecast period to estimate the market size for Membrane Electrode Assemblies (MEA) for Fuel Cells.

This report researches the worldwide Membrane Electrode Assemblies (MEA) for Fuel Cells market size (value, capacity, production and consumption) in key regions like United States, Europe, Asia Pacific (China, Japan) and other regions. This study categorizes the global Membrane Electrode Assemblies (MEA) for Fuel Cells breakdown data by manufacturers, region, type and application, also analyzes the market status, market share, growth rate, future trends, market drivers, opportunities and challenges, risks and entry barriers, sales channels, distributors and Porter's Five Forces Analysis.

The following manufacturers are covered in this report:
3M
Dupont
Fuel Cells Etc
Freudenberg
Gore
Johnson Matthey
Ballard
Greenerity
Wuhan WUT
IRD Fuel Cells
Giner
HyPlat
Bing Energy
Yangtze Energy Technologies

Membrane Electrode Assemblies (MEA) for Fuel Cells Breakdown Data by Type
3-layer MEA
5-layer MEA
Other

Membrane Electrode Assemblies (MEA) for Fuel Cells Breakdown Data by Application
Electric Vehicle
Portable Power Supply
Electric Drive Device
Others

Membrane Electrode Assemblies (MEA) for Fuel Cells Production Breakdown Data by Region
United States
Europe
China
Japan
Other Regions

Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption Breakdown Data by Region
North America
United States
Canada
Mexico
Asia-Pacific
China
India
Japan
South Korea
Australia
Indonesia
Malaysia
Philippines
Thailand
Vietnam
Europe
Germany
France
UK
Italy
Russia
Rest of Europe
Central & South America
Brazil
Rest of South America
The study objectives are:

To analyze and research the global Membrane Electrode Assemblies (MEA) for Fuel Cells capacity, production, value, consumption, status and forecast;
To focus on the key Membrane Electrode Assemblies (MEA) for Fuel Cells manufacturers and study the capacity, production, value, market share and development plans in next few years.
To focuses on the global key manufacturers, to define, describe and analyze the market competition landscape, SWOT analysis.
To define, describe and forecast the market by type, application and region.
To analyze the global and key regions market potential and advantage, opportunity and challenge, restraints and risks.
To identify significant trends and factors driving or inhibiting the market growth.
To analyze the opportunities in the market for stakeholders by identifying the high growth segments.
To strategically analyze each submarket with respect to individual growth trend and their contribution to the market.
To analyze competitive developments such as expansions, agreements, new product launches, and acquisitions in the market.
To strategically profile the key players and comprehensively analyze their growth strategies.

In this study, the years considered to estimate the market size of Membrane Electrode Assemblies (MEA) for Fuel Cells:
History Year: 2014-2018
Base Year: 2018
Estimated Year: 2019
Forecast Year 2019 to 2025
For the data information by region, company, type and application, 2018 is considered as the base year. Whenever data information was unavailable for the base year, the prior year has been considered.

Contents:

Table of Contents
1 Study Coverage
 • 1.1 Membrane Electrode Assemblies (MEA) for Fuel Cells Product
 • 1.2 Key Market Segments in This Study
 • 1.3 Key Manufacturers Covered
 • 1.4 Market by Type
 • 1.4.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Market Size Growth Rate by Type
 • 1.4.2 3-layer MEA
 • 1.4.3 5-layer MEA
 • 1.4.4 Other
 • 1.5 Market by Application
 • 1.5.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Market Size Growth Rate by Application
 • 1.5.2 Electric Vehicle
 • 1.5.3 Portable Power Supply
 • 1.5.4 Electric Drive Device
 • 1.5.5 Others
 • 1.6 Study Objectives
 • 1.7 Years Considered
2 Executive Summary
 • 2.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Production
 • 2.1.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue 2014-2025
 • 2.1.2 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Production 2014-2025
 • 2.1.3 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Capacity 2014-2025
 • 2.1.4 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Marketing Pricing and Trends
 • 2.2 Membrane Electrode Assemblies (MEA) for Fuel Cells Growth Rate (CAGR) 2019-2025
 • 2.3 Analysis of Competitive Landscape
 • 2.3.1 Manufacturers Market Concentration Ratio (CR5 and HHI)
 • 2.3.2 Key Membrane Electrode Assemblies (MEA) for Fuel Cells Manufacturers
 • 2.4 Market Drivers, Trends and Issues
 • 2.5 Macroscopic Indicator
 • 2.5.1 GDP for Major Regions
 • 2.5.2 Price of Raw Materials in Dollars: Evolution
3 Market Size by Manufacturers
 • 3.1 Membrane Electrode Assemblies (MEA) for Fuel Cells Production by Manufacturers
 • 3.1.1 Membrane Electrode Assemblies (MEA) for Fuel Cells Production by Manufacturers
 • 3.1.2 Membrane Electrode Assemblies (MEA) for Fuel Cells Production Market Share by Manufacturers
 • 3.2 Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue by Manufacturers
 • 3.2.1 Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue by Manufacturers (2014-2019)
 • 3.2.2 Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue Share by Manufacturers (2014-2019)
 • 3.3 Membrane Electrode Assemblies (MEA) for Fuel Cells Price by Manufacturers
 • 3.4 Mergers & Acquisitions, Expansion Plans
4 Membrane Electrode Assemblies (MEA) for Fuel Cells Production by Regions
 • 4.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Production by Regions
 • 4.1.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Production Market Share by Regions
 • 4.1.2 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue Market Share by Regions
 • 4.2 United States
 • 4.2.1 United States Membrane Electrode Assemblies (MEA) for Fuel Cells Production
4.2.2 United States Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue
4.2.3 Key Players in United States
4.2.4 United States Membrane Electrode Assemblies (MEA) for Fuel Cells Import & Export

4.3 Europe
4.3.1 Europe Membrane Electrode Assemblies (MEA) for Fuel Cells Production
4.3.2 Europe Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue
4.3.3 Key Players in Europe
4.3.4 Europe Membrane Electrode Assemblies (MEA) for Fuel Cells Import & Export

4.4 China
4.4.1 China Membrane Electrode Assemblies (MEA) for Fuel Cells Production
4.4.2 China Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue
4.4.3 Key Players in China
4.4.4 China Membrane Electrode Assemblies (MEA) for Fuel Cells Import & Export

4.5 Japan
4.5.1 Japan Membrane Electrode Assemblies (MEA) for Fuel Cells Production
4.5.2 Japan Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue
4.5.3 Key Players in Japan
4.5.4 Japan Membrane Electrode Assemblies (MEA) for Fuel Cells Import & Export

4.6 Other Regions
4.6.1 South Korea
4.6.2 India
4.6.3 Southeast Asia

5 Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Regions

5.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Regions
5.1.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Regions
5.1.2 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption Market Share by Regions

5.2 North America
5.2.1 North America Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Application
5.2.2 North America Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Countries
5.2.3 United States
5.2.4 Canada
5.2.5 Mexico

5.3 Europe
5.3.1 Europe Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Application
5.3.2 Europe Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Countries
5.3.3 Germany
5.3.4 France
5.3.5 UK
5.3.6 Italy
5.3.7 Russia

5.4 Asia Pacific
5.4.1 Asia Pacific Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Application
5.4.2 Asia Pacific Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Countries
5.4.3 China
5.4.4 Japan
5.4.5 South Korea
5.4.6 India
5.4.7 Australia
5.4.8 Indonesia
5.4.9 Thailand
5.4.10 Malaysia
5.4.11 Philippines
5.4.12 Vietnam

5.5 Central & South America
5.5.1 Central & South America Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Application
5.5.2 Central & South America Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Countries
5.5.3 Brazil

5.6 Middle East and Africa
5.6.1 Middle East and Africa Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Application
5.6.2 Middle East and Africa Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Countries
5.6.3 Turkey
5.6.4 GCC Countries
5.6.5 Egypt
5.6.6 South Africa

6 Market Size by Type
6.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Breakdown Data by Type
6.2 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue by Type
6.3 Membrane Electrode Assemblies (MEA) for Fuel Cells Price by Type

7 Market Size by Application
7.1 Overview
7.2 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Breakdown Data by Application
7.2.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption by Application

8 Manufacturers Profiles
8.1 3M
8.1.1 3M Company Details
8.1.2 Company Description
8.1.3 Capacity, Production and Value of Membrane Electrode Assemblies (MEA) for Fuel Cells
8.1.4 Membrane Electrode Assemblies (MEA) for Fuel Cells Product Description
8.1.5 SWOT Analysis

8.2 Dupont
8.2.1 Dupont Company Details
8.2.2 Company Description
8.2.3 Capacity, Production and Value of Membrane Electrode Assemblies (MEA) for Fuel Cells
8.2.4 Membrane Electrode Assemblies (MEA) for Fuel Cells Product Description
8.2.5 SWOT Analysis

8.3 Fuel Cells Etc
8.3.1 Fuel Cells Etc Company Details
8.3.2 Company Description
8.3.3 Capacity, Production and Value of Membrane Electrode Assemblies (MEA) for Fuel Cells
8.3.4 Membrane Electrode Assemblies (MEA) for Fuel Cells Product Description
8.3.5 SWOT Analysis

8.4 Freudenberg
8.4.1 Freudenberg Company Details
8.4.2 Company Description
8.4.3 Capacity, Production and Value of Membrane Electrode Assemblies (MEA) for Fuel Cells
8.4.4 Membrane Electrode Assemblies (MEA) for Fuel Cells Product Description
8.4.5 SWOT Analysis

8.5 Gore
8.5.1 Gore Company Details
8.5.2 Company Description
8.5.3 Capacity, Production and Value of Membrane Electrode Assemblies (MEA) for Fuel Cells
8.5.4 Membrane Electrode Assemblies (MEA) for Fuel Cells Product Description
8.5.5 SWOT Analysis

8.6 Johnson Matthey
8.6.1 Johnson Matthey Company Details
8.6.2 Company Description
8.6.3 Capacity, Production and Value of Membrane Electrode Assemblies (MEA) for Fuel Cells
8.6.4 Membrane Electrode Assemblies (MEA) for Fuel Cells Product Description
8.6.5 SWOT Analysis

8.7 Ballard
8.7.1 Ballard Company Details
8.7.2 Company Description
8.7.3 Capacity, Production and Value of Membrane Electrode Assemblies (MEA) for Fuel Cells
8.7.4 Membrane Electrode Assemblies (MEA) for Fuel Cells Product Description
8.7.5 SWOT Analysis

8.8 Greenerity
8.8.1 Greenerity Company Details
8.8.2 Company Description
8.8.3 Capacity, Production and Value of Membrane Electrode Assemblies (MEA) for Fuel Cells
8.8.4 Membrane Electrode Assemblies (MEA) for Fuel Cells Product Description
8.8.5 SWOT Analysis

8.9 Wuhan WUT
8.9.1 Wuhan WUT Company Details
8.9.2 Company Description
8.9.3 Capacity, Production and Value of Membrane Electrode Assemblies (MEA) for Fuel Cells
8.9.4 Membrane Electrode Assemblies (MEA) for Fuel Cells Product Description
8.9.5 SWOT Analysis

8.10 IRD Fuel Cells
8.10.1 IRD Fuel Cells Company Details
8.10.2 Company Description
8.10.3 Capacity, Production and Value of Membrane Electrode Assemblies (MEA) for Fuel Cells
8.10.4 Membrane Electrode Assemblies (MEA) for Fuel Cells Product Description
8.10.5 SWOT Analysis

8.11 Giner
8.12 HyPlat
8.13 Bing Energy
8.14 Yangtze Energy Technologies

9 Production Forecasts
9.1 Membrane Electrode Assemblies (MEA) for Fuel Cells Production and Revenue Forecast
9.1.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Production Forecast 2019-2025
9.1.2 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue Forecast 2019-2025

9.2 Membrane Electrode Assemblies (MEA) for Fuel Cells Production and Revenue Forecast by Regions
9.2.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue Forecast by Regions
9.2.2 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Production Forecast by Regions

9.3 Membrane Electrode Assemblies (MEA) for Fuel Cells Key Producers Forecast
9.3.1 United States
9.3.2 Europe
9.3.3 China
9.3.4 Japan

9.4 Forecast by Type
9.4.1 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Production Forecast by Type
9.4.2 Global Membrane Electrode Assemblies (MEA) for Fuel Cells Revenue Forecast by Type

10 Consumption Forecast
10.1 Consumption Forecast by Application
10.2 Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption Forecast by Regions
10.3 North America Market Consumption Forecast
10.3.1 North America Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption Forecast by Countries 2019-2025
10.3.2 United States
10.3.3 Canada
10.3.4 Mexico
10.4 Europe Market Consumption Forecast
10.4.1 Europe Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption Forecast by Countries 2019-2025
- 10.4.2 Germany
- 10.4.3 France
- 10.4.4 UK
- 10.4.5 Italy
- 10.4.6 Russia

10.5 Asia Pacific Market Consumption Forecast
- 10.5.1 Asia Pacific Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption Forecast by Countries 2019-2025
 - 10.5.2 China
 - 10.5.3 Japan
 - 10.5.4 Korea
 - 10.5.5 India
 - 10.5.6 Australia
 - 10.5.7 Indonesia
 - 10.5.8 Thailand
 - 10.5.9 Malaysia
 - 10.5.10 Philippines
 - 10.5.11 Vietnam

10.6 Central & South America Market Consumption Forecast
- 10.6.1 Central & South America Membrane Electrode Assemblies (MEA) for Fuel Cells Consumption Forecast by Country 2019-2025
 - 10.6.2 Brazil

11 Upstream, Industry Chain and Downstream Customers Analysis
- 11.1 Analysis of Membrane Electrode Assemblies (MEA) for Fuel Cells Upstream Market
 - 11.1.1 Membrane Electrode Assemblies (MEA) for Fuel Cells Key Raw Material
 - 11.1.2 Typical Suppliers of Key Membrane Electrode Assemblies (MEA) for Fuel Cells Raw Material
 - 11.1.3 Membrane Electrode Assemblies (MEA) for Fuel Cells Raw Material Market Concentration Rate

12 Opportunities & Challenges, Threat and Affecting Factors
- 12.1 Market Opportunities
- 12.2 Market Challenges
- 12.3 Porter's Five Forces Analysis

13 Key Findings

14 Appendix
- 14.1 Research Methodology
 - 14.1.1 Methodology/Research Approach
 - 14.1.2 Data Source
- 14.2 Author Details