Biochips (Microarrays/Microfluidics) Global Market – Forecast To 2023

Description:

Biochips come handy as thousands of experiments are performed on a small chip with a solid platform and acts like a mini laboratory. Usage of biochips has increased in the past decade as its application varies from high throughput screening in drug discovery to personalized medicine.

The global biochips market is expected to grow at double digit CAGR to reach $17,851.1 million by 2023. Biochips market is mainly classified into technologies, products, application and end-users. The global biochips market is broadly classified as micro arrays and microfluidics based on technology. Based on products, the market is classified into Instruments, Reagents & Consumables and Software & Services. Biochips market is segmented on the basis of application as Genomics, Proteomics, Drug discovery, Diagnostics, Food & agricultural testing and others. Genomics application segment is further classified into SNP Genotyping, Gene Expression and Others whereas Drug discovery segment is further sub segmented into Target Identification & Validation, HTS (High Throughput screening) and Lead Optimization. Diagnostics segment is further divided into Cancer diagnostics and other diagnostics. End-Users are further classified into Pharmaceutical & Biotech companies, Academic & Research laboratories, Diagnostic laboratories, CROs (Contract and Research Organizations) and others.

Among microarrays and Microfluidics, Microfluidics occupies the major share in 2016 and is expected to grow at a highest CAGR from 2016 to 2023. Among products Reagents & consumables occupy the major share of XX% in 2016 and are expected to grow at a CAGR of XX% from 2016 to 2023 to reach $XX million by 2023. Among Application segment Diagnostics commanded the larger revenue in 2016 and is expected to grow at a highest CAGR of XX% from 2016 to 2023. Among Genomics, SNP genotyping occupies a major share in 2016 with a CAGR of XX% from 2016 to 2023. Target Identification & Validation in Drug discovery segment occupies a major share of XX% in 2016 and similarly other diagnostics occupies a major share of XX% in 2016 and grows with a CAGR of XX% from 2016 to 2023. Diagnostic laboratories occupy a major share of XX% in 2016 and grow with a maximum CAGR of XX% from 2016 to 2023.

Revolution in the field of genomics, proteomics as well as rapid drug discovery increased the demand for biochips. In addition, increase in diagnosis and treatment of cancer and genetic diseases, approval for personalized medicines and invention of novel technologies in biochips drives the market of biochips. Standardization and quality assurance of biochips, technological ease in handling the biochips especially in the areas of diagnosis and treatment, high cost along with ethical and social issues hinders the market growth.

Lifestyle changes owing to increase in cancer, diabetes and hypertension patients, early diagnosis and treatment of diseases, advancement of biochips with its wide application areas shows that biochip market has vast opportunities in the coming years. North America accounts for the highest market share in 2016 and followed by Europe. Steep rise in genetic diagnosis, huge corporate outsourcing for drug discovery, increase in personalized medicines and favourable government policies makes U.S. the leader of Biochips market. However, Asian countries especially China and Japan are the fastest growing regions with its growing demand for biochips and increasing research investments. Asia-Pacific grows with a highest CAGR of XX% from 2016 to 2023.

Major players in biochips market include Abbott laboratories (U.S.), Agilent Technologies (U.S.), Becton-Dickinson Company (U.S.), Bio-Rad Laboratories (U.S.), Danaher Corporation (U.S.), Fluidigm Corporation (U.S.), GE Healthcare (U.S.), Illumina (U.S.), PerkinElmer, Inc. (U.S.) and Thermo Fisher Scientific, Inc. (U.S.).

The report provides an in depth market analysis of the above mentioned segments across the following regions:

- North America
- Europe
- Asia-Pacific
- Rest of the World

Contents:

1 EXECUTIVE SUMMARY 29
2 INTRODUCTION 38
 • 2.1 KEY TAKE AWAYS 38
 • 2.2 REPORT DESCRIPTION 39
 • 2.3 MARKETS COVERED 41
 • 2.4 STAKEHOLDERS 43
 • 2.5 RESEARCH METHODOLOGY 44
 • 2.5.1 MARKET SIZE ESTIMATION 45
 • 2.5.2 MARKET BREAKDOWN AND DATA TRIANGULATION 48
 • 2.5.3 SECONDARY SOURCES 49
 • 2.5.4 PRIMARY SOURCES 50
 • 2.5.5 KEY DATA POINTS FROM SECONDARY SOURCES 50
 • 2.5.6 KEY DATA POINTS FROM PRIMARY SOURCES 51
 • 2.5.7 ASSUMPTIONS 51
3 MARKET ANALYSIS 53
 • 3.1 INTRODUCTION 53
 • 3.2 MARKET SEGMENTATION 54
 • 3.3 FACTORS INFLUENCING MARKET 56
 • 3.3.1 DRIVERS AND OPPORTUNITIES 57
 • 3.3.1.1 Increase in usage of biochips in cancer diagnostics 57
 • 3.3.1.2 Biochips preference in personalized medicine 57
3.3.1.3 Widening application market 58
3.3.1.4 Emerging asia pacific market 59
3.3.1.5 Increased government funding 60
3.3.2 RESTRAINTS AND THREATS 60
3.3.2.1 High cost of biochips 60
3.3.2.2 Lack of standardization 61
3.3.2.3 Limited skilled personnel to work on biochips 61
3.3.2.4 Stringent regulations 62
3.3.2.5 Adoption of NGS 63
3.4 PORTER’S FIVE FORCE ANALYSIS 63
3.4.1 THREAT OF NEW ENTRENTS 64
3.4.2 THREAT OF SUBSTITUTES 65
3.4.3 RIVALRY AMONG EXISTING COMPETITORS 65
3.4.4 BARGAINING POWER OF SUPPLIERS 66
3.4.5 BARGAINING POWER OF BUYERS 66
3.5 REGULATORY GUIDELINES 67
3.5.1 UNITED STATES 67
3.5.2 EUROPE 68
3.5.3 CHINA 68
3.5.4 INDIA 69
3.5.5 JAPAN 70
3.6 MARKET SHARE ANALYSIS BY MAJOR PLAYERS 71
3.6.1 MICROARRAY TECHNOLOGY GLOBAL MARKET SHARE ANALYSIS BY
3.6.2 MICROFLUIDIC TECHNOLOGY GLOBAL MARKET SHARE ANALYSIS

MAJOR PLAYERS 73
3.7 PATENT TRENDS 77
3.8 SUPPLY CHAIN ANALYSIS 79
3.9 BIOCHIPS UNDER CLINICAL TRIAL 81
3.10 NEW PRODUCT LAUNCHES 83
3.11 TECHNOLOGICAL ADVANCEMENTS 89
3.11.1 “LAB ON A CHIP” THAT COSTS 1 CENT TO MAKE 89
3.11.2 LIGHT BASED LAB-ON-A-CHIP DEVICE 89
3.11.3 NEW NEURO CHIP 90
3.11.4 3D PRINTED ORGAN-ON-A-CHIP 90
3.11.5 LIQUID BIOPSY CHIPS FOR THE DETECTION OF METASTATIC

CANCER CELLS 91
3.11.6 PLACENTA ON A CHIP 92
4 BIOCHIPS GLOBAL MARKET, BY TECHNOLOGY 93
4.1 INTRODUCTION 93
4.2 MICROARRAYS 95
4.2.1 DNA MICROARRAYS 99
4.2.2 PROTEIN MICROARRAYS 103
4.2.3 TISSUE MICROARRAYS 110
4.2.4 CELL MICROARRAYS 113
4.2.5 OTHER MICROARRAYS 114
4.3 LAB-ON-A-CHIP (MICROFLUIDICS) 116
4.3.1 PCR-ON-A-CHIP 120
4.3.2 IMMUNOASSAYS-ON-A-CHIP 123
4.3.3 ELECTROPHORESIS-ON-A-CHIP 126
4.3.4 FLOW CYTOMETRY-ON-A-CHIP 128
4.3.5 NGS-ON-A-CHIP 130
4.3.6 ORGAN-ON-CHIP 132
4.3.7 OTHERS 134
5 BIOCHIPS GLOBAL MARKET, BY PRODUCTS 138
5.1 INTRODUCTION 138
5.2 INSTRUMENTS 141
5.3 REAGENTS AND CONSUMABLES 143
5.4 SOFTWARE AND SERVICES 145
6 BIOCHIPS GLOBAL MARKET, BY APPLICATIONS 149
6.1 INTRODUCTION 149
6.2 GENOMICS 152
6.2.1 GENE EXPRESSION 154
6.2.2 SNP GENOTYPING 156
6.2.3 OTHER GENOMICS 159
6.3 PROTEOMICS 161
6.4 DRUG DISCOVERY & DEVELOPMENT 164
6.4.1 TARGET IDENTIFICATION AND VALIDATION 166
6.4.2 HIGH THROUGHPUT SCREENING 169
6.4.3 LEAD OPTIMIZATION 172
6.5 DIAGNOSTICS 174
6.5.1 CANCER DIAGNOSTICS 176
6.5.2 OTHER DIAGNOSTICS 178
6.6 FOOD AND AGRICULTURE TESTING 180
6.7 OTHERS 182
7 BIOCHIPS GLOBAL MARKET, BY END-USERS 186
7.1 INTRODUCTION 186
7.2 PHARMACEUTICAL AND BIOTECH COMPANIES 189
7.3 ACADEMIC & RESEARCH LABORATORIES 191
7.4 CONTRACT RESEARCH ORGANISATIONS 193